		Std. XI INDIAN SCHOOL AL WADI AL KABIR Mathematics work sheet Sequences and Series	18-10-2023
1.	Find nt	h term of the series: $3.2 + 4.4 + 5.8 +$	ANSWERS
			(n+2)(2n)
2.	Find x if 27, x and 243 are in GP		±81
3.	How many three digit numbers are divisible by 11?		81
4.	If AM and GM of two positive numbers are 8 and		4 and 12
	$4\sqrt{3}$ then find the numbers.		1000
5.	Find sum of first 10 terms GP: 1, 2, 4, 8,		1023
6.	Evaluat	te: $3^{1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots}$	9
7.	How m to be	nany terms of the series $33^2 + 3^3 + \dots$ added to get 120.	4
8.	There a	re four numbers such that the first three are in AP and the	-3, 1, 5, 25
	last thre	ee are in GP. The sum of the first and third is 2 and that of	7, 1, -5, 25
	second	and the fourth is 26. Find the numbers	CBQ
9.	If one g	geometric mean p and two arithmetic means q and r are	CBQ
	inserted	d between two positive numbers, then prove that	
10	(2q-r)	$p(2\mathbf{r} - \mathbf{q}) = \mathbf{p}^2$	200
11	Case st A squar of a squ same w first squ i) ii) iii)	tudy based: re is drawn by joining the midpoints of the sides of the side of the vay and the process is continued indefinitely. If the side of the uare is 10 cm Write the sides of squares as a sequence Is the sequence form a GP? Why? Find the sum of areas of all the squares so formed.	
11.	If the suppoduct	um of three consecutive terms in a G P is 13 and their t is 27, find the numbers	OR 9, 3, 1
12.	Three N them re	Numbers are in AP and their sum is 15, If 1, 3, 9 be added to espectively, they form a G P. Find the numbers.	3, 5, 7 OR 15, 5, -5
13.	If a, b, in AP.	c are in GP and $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$, then show that x, y and z are	CBQ
14.	If sum the suc	of an infinite GP is 5 and each term is three times the sum of ceeding terms. Find the GP	$\frac{15}{4}, \frac{15}{16}$
15.	Let x= Prove t	$1 + a + a^2 + \dots$ and $y = 1 + b + b^2 + \dots$ where $ a and b < 1$. hat $1 + ab + a^2b^2 + \dots = \frac{xy}{xy}$	СВQ
		<u>x+y-1</u>	